4.5 Article

Protein precipitation by polyethylene glycol: A generalized model based on hydrodynamic radius

期刊

JOURNAL OF BIOTECHNOLOGY
卷 157, 期 2, 页码 315-319

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2011.09.028

关键词

Hydrodynamic radius; Molecular weight; Polyethylene glycol; Precipitation; Protein

资金

  1. Biomedical Research Council of Agency for Science, Technology and Research (A*STAR), Singapore

向作者/读者索取更多资源

PEGs for protein precipitation are usually classified by molecular weight. The higher molecular weight precipitants are more efficient but result in higher viscosity. Following empirical evidence that the precipitation efficiency is more comprehensively characterized by PEG hydrodynamic radius (r(h,pEG)) than molecular weight, this paper proposes a model to explicate the significance of r(h,pEG). A general expression was formulated to characterize the PEG effect exclusively by r(h.pEG). The coefficients of a linearized form were then fitted using empirical solubility data. The result is a simple numerical relation that models the efficiency of general-shaped PEG precipitants as a function of r(h,pEG) and protein hydrodynamic radius (r(h,prot)). This equation also explains the effects of environmental conditions and PEG branching. While predictions by the proposed correlation agree reasonably well with independent solubility data, its simplicity gives rise to potential quantitative deviations when involving small proteins, large proteins and protein mixtures. Nonetheless, the model offers a new insight into the precipitation mechanism by clarifying the significance of r(h,PEG). This in turn helps to refine the selection criterion for PEG precipitants. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据