4.5 Article

Microelastic gradient gelatinous gels to induce cellular mechanotaxis

期刊

JOURNAL OF BIOTECHNOLOGY
卷 133, 期 2, 页码 225-230

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jbiotec.2007.08.015

关键词

mechanotaxis; cell motility; microelastic gradient gel; AFM; microindentation test; styrenated gelatin

向作者/读者索取更多资源

The understanding and realization of directional cell movement towards a harder region of a cell culture substrate surface, so-called mechanotaxis, might provide a solid basis for a functional artificial extracellular matrix, enabling manipulation and elucidation of cell motility. The photolithographic surface microelasticity patterning method was developed for fabricating a cell-adhesive hydrogel with a microelasticity gradient (MEG) surface using photocurable styrenated gelatin to investigate the condition of surface elasticity to induce mechanotaxis as a basis for such substrate-elasticity-dependent control of cell motility. Patterned MEG gels consisting of different absolute surface elasticities and elasticity jumps were prepared. Surface elasticity and its two-dimensional distribution were characterized by microindentation tests using atomic force microscopy (AFM). From analyses of trajectories of 3T3 cell movement on each prepared MEG gel, two critical criteria of the elasticity jump and the absolute elasticity to induce mechanotaxis were identified: (1) a high elasticity ratio between the hard region and the soft one, and (2) elasticity of the softer region to provide medium motility. Design of these conditions was found to be necessary for fabricating an artificial extracellular matrix to control or manipulate cell motility. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据