4.4 Article

Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism in Bacillus megaterium DSM 509

期刊

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
卷 116, 期 3, 页码 302-308

出版社

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2013.02.017

关键词

Polyhydroxyalkanoates; Bacillus megaterium; Pseudomonas putida; Nitrogen depletion; Gas chromatography mass spectrometry; Fourier transform infra-red spectroscopy

资金

  1. Higher Education Commission (HEC) of Pakistan
  2. Conseil Regional de Basse-Normandie

向作者/读者索取更多资源

Twenty bacterial strains were examined on their ability to produce polyhydroxyalkanoates (PHA) from different carbon sources under rich and depleted nitrogen conditions. Preliminary experiments with glucose as sole carbon source allowed to select PHA producing bacteria using FTIR spectroscopy. They were further tested with eight additional carbon substrates including organic, fatty acids or sugars. PHA content and monomer composition of four chosen strains (Pseudomonas putida mt-2, Bacillus megaterium DSM 90 and DSM 509, Corynebacterium glutamicum DSM 20137) were assessed by gas chromatography techniques for two cultural conditions: during growth phase on a mineral medium (MM) and after transfer of cells on a fresh MM without nitrogen (MM-N). For several carbon substrates, substantial amounts of PHA (up to 53% of the cell dry weight: COW) were already obtained in MM for C. glutamicum DSM 20137 and the two B. megaterium strains; after transfer in MM-N, PHA contents remained constant except for B. megaterium DSM 509 where PHA production increased whatever the carbon source. P. putida mt-2 synthesized PHA under deprived nitrogen conditions. Highest PHA accumulation reached 48 and 77% of COW with octanoic acid as substrate in B. megaterium DSM 90 and P. putida mt-2, respectively. Surprisingly, an atypical metabolic shift was observed for B. megaterium DSM 509 cultivated with nearly all unrelated carbon sources: whereas short chain length PHA (scl-PHA) were synthesized in MM, medium chain length PHA (mcl-PHA) were produced after transfer of cells into MM-N supplemented with the same substrate. (C) 2013, The Society for Biotechnology, Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据