4.4 Article

Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications

期刊

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
卷 114, 期 6, 页码 663-670

出版社

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1016/j.jbiosc.2012.07.005

关键词

Cryogels; Skin tissue engineering; Cardiac tissue engineering; Scaffolds; Rheology

资金

  1. Department of Biotechnology, Government of India

向作者/读者索取更多资源

Tissue engineering is a potential approach for the repair of damaged tissues or organs like skin, cartilage, bone etc. Approach utilizes the scaffolds constructed from natural or synthetic polymers fabricated by the available fabrication technologies. This study focuses on the fabrication of the scaffolds using a novel technology called cryogelation, which synthesizes the scaffolds at sub-zero temperature. We have synthesized a novel scaffold from natural polymers like chitosan, agarose and gelatin in optimized ratio using the cryogelation technology. The elasticity of the scaffold was confirmed by rheological studies which supports the utility of the scaffolds for skin and cardiac tissue engineering. Proliferation of different cell types like fibroblast and cardiac cells was analysed by scanning electron microscopy (SEM) and fluorescent microscopy. Biocompatibility of the scaffolds was tested by MTT assay with specific cell type, which showed higher proliferation of the cells on the scaffolds when compared to the two dimensional culture system. Cell proliferation of C2C12 and Cos 7 cells on these scaffolds was further analysed biochemically by alamar blue test and Hoechst test. Biochemical and microscopic analysis of the different cell types on these scaffolds gives an initial insight of these scaffolds towards their utility in skin and cardiac tissue engineering. (C) 2012, The Society for Biotechnology, Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据