4.6 Article

Simultaneous cell traction and growth measurements using light

期刊

JOURNAL OF BIOPHOTONICS
卷 12, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jbio.201800182

关键词

mass; quantitative phase imaging; stem cells; traction force

资金

  1. National Institutes of Health [HL12175]
  2. National Science Foundation (US) [IIP-1353368]
  3. National Science Foundation [CBET-0939511 STC, DBI 14-50962 EAGER, DMR-1309188, 1454616 CAR, DGE - 1144245]

向作者/读者索取更多资源

Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real-time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi-fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据