4.7 Article

Conformational stability of OXA-51 beta-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 32, 期 9, 页码 1406-1420

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2013.819789

关键词

beta-lactams; carbapenemase; OXA-51; conformational stability; carbapenem resistance; Acinetobacter baumannii; beta-lactamase

资金

  1. Council of Scientific and Industrial Research, India [09/006(0361)/2006-EMR-1]
  2. Indian Council of Medical Research, New Delhi [ICMR-5/3/3/18/2009-ECD-I]

向作者/读者索取更多资源

Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent beta-lactam like imipenem. Production of different types of beta-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a beta-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure-function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV-Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6 kDa, pI 8.43 with no disulphide bonds and comprising of 30% alpha-helix, 27% beta-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4-10) and temperature (30-60 degrees C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (k(m), 1 mu M) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH-and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest beta-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据