4.6 Article

A new multi-criteria weighting and ranking model for group decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems

期刊

NEURAL COMPUTING & APPLICATIONS
卷 27, 期 6, 页码 1593-1605

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-015-1958-0

关键词

Group decision-making analysis; Weighting and ranking model; Interval-valued hesitant fuzzy sets; Location and supplier selection problems

向作者/读者索取更多资源

The multi-criteria group decision-making methods under fuzzy environments are developed to cope with imprecise and uncertain information for solving the complex group decision-making problems. A team of some professional experts for the assessment is established to judge candidates or alternatives among the chosen evaluation criteria. In this paper, a novel multi-criteria weighting and ranking model is introduced with interval-valued hesitant fuzzy setting, namely IVHF-MCWR, based on the group decision analysis. The interval-valued hesitant fuzzy set theory is a powerful tool to deal with uncertainty by considering some interval-values for an alternative under a set regarding assessment factors. In procedure of the proposed IVHF-MCWR model, weights of criteria as well as experts are considered to decrease the errors. In this regard, optimal criteria' weights are computed by utilizing an extended maximizing deviation method based on IVHF-Hamming distance measure. In addition, experts' judgments are taken into account for computing the criteria' weights. Also, experts' weights are determined based on proposed new IVHF technique for order performance by similarity to ideal solution method. Then, a new IVHF-index based on Hamming distance measure is introduced to compute the relative closeness coefficient for ranking the candidates or alternatives. Finally, two application examples about the location and supplier selection problems are considered to indicate the capability of the proposed IVHF-MCWR model. In addition, comparative analysis is reported to compare the proposed model and three fuzzy decision methods from the recent literature. Comparing these approaches and computational results shows that the IVHF-MCWR model works properly under uncertain conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据