4.3 Article

PCS-based structure determination of protein-protein complexes

期刊

JOURNAL OF BIOMOLECULAR NMR
卷 46, 期 4, 页码 271-280

出版社

SPRINGER
DOI: 10.1007/s10858-010-9401-4

关键词

Lanthanide-binding peptide tag; Two-point anchoring; Paramagnetic NMR; Pseudo-contact shift; Rigid-body docking; Autophagy

向作者/读者索取更多资源

A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and (1)H(N)/(15)N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (similar to 40 ) distance and angular restraints between the lanthanide ion and the observed nuclei, while the (1)H(N)/(15)N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure determination of the p62 PB1-PB1 complex, which forms a front-to-back 20 kDa homo-oligomer. As p62 PB1 does not intrinsically bind metal ions, the lanthanide binding peptide tag was attached to one subunit of the dimer at two anchoring points. Each monomer was treated as a rigid body and was docked based on the backbone PCS and backbone chemical shift perturbation data. Unlike NOE-based structural determination, this method only requires resonance assignments of the backbone (1)H(N)/(15)N signals and the PCS data obtained from several sets of two-dimensional (15)N-heteronuclear single quantum coherence spectra, thus facilitating rapid structure determination of the protein-protein complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据