4.1 Article

Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2011/310791

关键词

-

资金

  1. American Heart Association [0825748G]
  2. NIH [T32 HL07249-31, R01 HL062881]
  3. Deutsche Forschungsgemeinschaft
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL062881, T32HL007249] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio similar to 0.5-1.0) than mice (N2BA: N2B ratio similar to 0.2). To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL) to SL of 2.15 mu m. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1-400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 mu m and by 50% at 2.25 mu m, suggesting a SL-dependent nature of viscosity that might prevent SL overshoot at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据