4.5 Article

Multispectral optoacoustic tomography at 64, 128, and 256 channels

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 19, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.19.3.036021

关键词

optoacoustics; tomography; imaging systems

向作者/读者索取更多资源

Optoacoustic (photoacoustic) imaging has already showcased the capacity to offer high-resolution small animal visualization in vivo in a variety of cancer, cardiovascular, or neuroimaging applications. In particular, multispectral optoacoustic tomography (MSOT) has shown imaging along the spectral and the time dimensions, enabling sensing of multiple molecules over time and, more recently, in real time. Furthermore, cross-sectional imaging of at least 20 mm diameter has been showcased in vivo in animals and humans using 64-element curved transducers placed along a single curved line. Herein, we investigated the imaging improvements gained by utilizing a larger number of detectors and inquired whether more detectors will result in measurable image quality improvements. For this reason, we implemented MSOT using 64-, 128-, and 256-element transducers and imaged the same phantoms and animals under similar conditions. Further, corroborated by numerical simulation analysis, our findings quantify the improvements in resolution and overall image quality for the increasing number of detectors used pointing to significant improvements in image quality for the 256 detector array, over 64 or 128 detectors. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据