4.5 Article

Quantification of collagen I in airway tissues using second harmonic generation

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 19, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.19.3.036005

关键词

second harmonic generation; chronic obstructive pulmonary disease; collagen I and image analysis

向作者/读者索取更多资源

Extracellular matrix (ECM) remodeling contributes to the pathogenic changes in chronic obstructive pulmonary disease (COPD) and is both complex and not well understood. Collagen I, a component of the ECM altered in COPD airways, has second harmonic generation (SHG) properties. The SHG signal is coherent, propagating both forward (F) (primarily organized/mature collagen fibrils) and backward (B) (primarily disorganized/immature collagen fibrils) parallel to the incident light. The F/B SHG ratio was used to determine the proportion of organized to disorganized collagen, with lower variation in F/B ratio between sampling regions within the same patient and between patients in the same disease group compared with analyzing F and B data alone. The F/B ratio was independent of laser power drift, regions analyzed within a tissue and tissue orientation during analysis. Using this method, we identified a significant difference in collagen organization in airway tissue between COPD and nondiseased. We have developed a robust optimization and calibration methodology that will allow direct comparison of data obtained at different times and from multiple microscopes, which is directly adaptable for use with other tissue types. We report a powerful new tool for advancing our understanding of pathological ECM remodeling that may uncover new therapeutic targets in the future. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据