4.5 Article

Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 14, 期 5, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.3213606

关键词

fluorescence imaging; lipid nanoparticles; cyanine dyes; molecular imaging; in vivo imaging; fluorescence quantum yield; fluorescence lifetime

资金

  1. Commissariat a l'Energie Atomique
  2. French National Research Agency (ANR) [ANR-08-NANO-006-02]

向作者/读者索取更多资源

Fluorescence is a very promising radioactive-free technique for functional imaging in small animals and, in the future, in humans. However, most commercial near-infrared dyes display poor optical properties, such as low fluorescence quantum yields and short fluorescence lifetimes. In this paper, we explore whether the encapsulation of infrared cyanine dyes within the core of lipid nanoparticles (LNPs) could improve their optical properties. Lipophilic dialkylcarbocyanines DiD and DiR are loaded very efficiently in 30-35-nm-diam lipid droplets stabilized in water by surfactants. No significant fluorescence autoquenching is observed up to 53 dyes per particle. Encapsulated in LNP, which are stable for more than one year at room temperature in HBS buffer (HEPES 0.02 M, EDTA 0.01 M, pH 5.5), DiD and DiR display far improved fluorescence quantum yields Phi (respectively, 0.38 and 0.25) and longer fluorescence lifetimes tau (respectively, 1.8 and 1.1 ns) in comparison to their hydrophilic counterparts Cy5 (Phi = 0.28, tau = 1.0 ns) and Cy7 (Phi = 0.13, tau = 0.57 ns). Moreover, dye-loaded LNPs are able to accumulate passively in various subcutaneous tumors in mice, thanks to the enhanced permeability and retention effect. These new fluorescent nanoparticles therefore appear as very promising labels for in vivo fluorescence imaging. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3213606]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据