4.5 Article

Reduction of background in optoacoustic image sequences obtained under tissue deformation

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 14, 期 5, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.3227038

关键词

optoacoustic imaging; photoacoustic imaging; image improvement; background reduction; tumor detection; combined imaging; displacement tracking; elasticity imaging

资金

  1. Swiss National Science Foundation [205320-103872]
  2. European Commission [LSHC-CT-2006-018858 PROMET]

向作者/读者索取更多资源

For real-time optoacoustic imaging of the human body, a linear array transducer and reflection mode optical irradiation is preferably used. Experimental outcomes however revealed that such a setup results in significant image background, which prevents imaging structures at the ultimate depth limited only by the optical attenuation of the irradiating light and the signal noise level. Various sources of image background, such as bulk tissue absorption, reconstruction artifacts, and backscattered ultrasound, could be identified. To overcome these limitations, we developed a novel method that results in significantly reduced background and increased imaging depth. For this purpose, we acquire, in parallel, a series of optoacoustic and echo-ultrasound images while the tissue sample is gradually deformed by an externally applied force. Optoacoustic signals and background signals are differently affected by the deformation and can thus be distinguished by image processing. This method takes advantage of a combined optoacoustic/echo-ultrasound device and has a strong potential for improving real-time optoacoustic imaging of deep tissue structures. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3227038]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据