4.5 Article

Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 13, 期 4, 页码 -

出版社

SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2967184

关键词

fluorescent proteins; optical tomography; whole-body imaging

资金

  1. National Institutes of Health [1R01EB00438201, 1R21CA110167]

向作者/读者索取更多资源

The discovery of new fluorescent proteins (FPs) that emit in the far-red part of the spectrum, where light absorption from tissue is significantly lower than in the visible, offers the possibility for noninvasive biological interrogation at the entire organ or small animal level in vivo. The performance of FPs in deep-tissue imaging depends not only on their optical characteristics, but also on the wavelength-dependent tissue absorption and the depth of the fluorescence activity. To determine the optimal choice of FP and illumination wavelength, we compared the performance of five of the most promising FPs: tdTomato, mCherry, mRaspberry, mPlum, and Katushka. We experimentally measured the signal strength through mice and employed theoretical predictions to obtain an understanding of the performance of different illumination scenarios, especially as they pertain to tomographic imaging. It was found that the appropriate combination of red-shifted proteins and illumination wavelengths can improve detection sensitivity in small animals by at least two orders of magnitude compared with green FP. It is also shown that the steep attenuation change of the hemoglobin spectrum around the 600-nm range may significantly affect the detection sensitivity and, therefore, necessitates the careful selection of illumination wavelengths for optimal imaging performance. (C) 2008 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据