4.5 Article

Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 13, 期 5, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2975826

关键词

biomedical optics; image processing; coherence; tomography; atrioventricular node; sinoatrial node

资金

  1. NIH [R01-HL67322]
  2. Medtronic, and a Whitaker Foundation

向作者/读者索取更多资源

The development of systems physiology is hampered by the limited ability to relate tissue structure and function in intact organs in vivo or in vitro. Here, we show the application of a bimodal biophotonic imaging approach that employs optical coherence tomography and fluorescent imaging to investigate the structure-function relationship at the tissue level in the heart. Reconstruction of cardiac excitation and structure was limited by the depth penetration of bimodal imaging to similar to 2 mm in atrial tissue, and similar to 1 mm in ventricular myocardium. The subcellular resolution of optical coherence tomography clearly demonstrated that microscopic fiber orientation governs the pattern of wave propagation in functionally characterized rabbit sinoatrial and atrioventricular nodal preparations and revealed structural heterogeneities contributing to ventricular arrhythmias. The combination of this bimodal biophotonic imaging approach with histology and/or immunohistochemistry can span multiple scales of resolution for the investigation of the molecular and structural determinants of intact tissue physiology. (C) 2008 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2975826]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据