4.5 Article

Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 13, 期 4, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2967908

关键词

Fabry-Perot interferometers; fiber optic sensors; intervertebral disc pressure; low-coherence interferometry; pressure sensors

资金

  1. National Institutes of Health (NIH) [1R03AR054051]
  2. Department of Bioengineering at the University of Maryland

向作者/读者索取更多资源

We developed a miniature fiber optic pressure sensor system and utilized it for in vitro intradiscal pressure measurements for rodents. One of the unique features of this work is the design and fabrication of a sensor element with a multilayer polymer-metal diaphragm. This diaphragm consists of a base polyimide layer (150 nm thick), a metal reflective layer (1 mu m thick), and another polyimide layer for protection and isolation (150 nm thick). The sensor element is biocompatible and can be fabricated by simple, batch-fabrication methods in a non-cleanroom environment with good device-to-device uniformity. The fabricated sensor element has an outer diameter of only 366 mu m, which is small enough to be inserted into the rodent discs without disrupting the structure or altering the intradiscal pressures. In the calibration and in vitro rodent intradiscal pressure measurements, the sensor element exhibits a linear response to the applied pressure over the range of 0-70 kPa, with a sensitivity of 0.0206 mu m/kPa and a resolution of 0.17 kPa. To our best knowledge, this work is the first successful demonstration of rodent intradiscal pressure measurements. (C) 2008 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据