4.4 Article

Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds

出版社

WILEY
DOI: 10.1002/jbm.b.33047

关键词

stem and progenitor cells; scaffold; transforming growth factor-beta; platelet-rich plasma; cartilage regeneration

资金

  1. European Union [TissueGEN: HEALTH-F4-2011-278955]

向作者/读者索取更多资源

Cartilage repair approaches may be improved by addition of human platelet-rich plasma (PRP) that increases chondrogenic differentiation of mesenchymal stem and progenitor cells. The aim of our study was to evaluate the effect of human PRP on the differentiation of multipotent human subchondral progenitor cells in resorbable polyglycolic acid-hyaluronan (PGA-HA) scaffolds. PGA-HA scaffolds were loaded with subchondral progenitor cells and stimulated with transforming growth factor-beta3 (TGFB3) or 5% PRP, whereas nonstimulated cultures served as controls. Chondrogenic differentiation was evaluated by real-time gene expression analysis of typical chondrogenic marker genes and by immunohistochemical staining of extracellular cartilage matrix molecules such as proteoglycans and collagen type II. TGFB3 and PRP induced the expression of chondrogenic marker genes collagen type II and IX, aggrecan, and cartilage oligomeric matrix protein in subchondral progenitor cells cultured in PGA-HA scaffolds compared with nonstimulated controls. Progenitor cells in PGA-HA scaffolds formed an extracellular matrix rich in proteoglycans and collagen type II on treatment with PRP, but to a lesser extent, than in cultures stimulated with TGFB3. The results suggest that PRP induces chondrogenic differentiation of progenitor cells in PGA-HA scaffolds and may be therefore beneficial in scaffold-assisted cartilage repair approaches involving stem and progenitor cells. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 681-692, 2014.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据