4.4 Article

Enhancing the bioactivity of zirconia and zirconia composites by surface modification

出版社

WILEY
DOI: 10.1002/jbm.b.32647

关键词

zirconia; alumina; bioactivity; aging; surface modification; alternate soaking

向作者/读者索取更多资源

Among bioceramics, zirconia (ZrO2) and alumina (Al2O3) possess exceptional mechanical properties suitable for load-bearing and wear-resistant applications but the poor bioactivity of these materials is the major concern when bonding and integration to the living bone are desired. This article investigates two different approaches and their underlying mechanisms to improve the bioactivity of zirconia (3Y-TZP) and a zirconia composite with alumina (10Ce-TZP/Al2O3). Chemical treatment approach applied on 3Y-TZP where the substrates were soaked in 5M H3PO4 to create chemically functional groups on the surface for inducing apatite nucleation. X-ray photoelectron spectroscopy (XPS) was used to detect chemical changes and X-ray diffraction (XRD) to monitor phase changes on the surface before and after acid treatment. Alternate soaking approach applied on 10Ce-TZP/Al2O3 consisted of soaking the composite substrates in CaCl2 and Na2HPO4 solutions alternately to make a precursor for apatite formation. The bioactivity was evaluated by apatite-forming ability of surface-treated materials in simulated body fluid (SBF). Both methods resulted in the formation of hydroxyapatite on the surface of materials; however, alternate soaking approach showed to be a simpler, faster, and more effective method than the chemical treatment approach for enhancing the bioactivity of zirconia materials. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据