4.4 Article

Control of magnesium corrosion and biocompatibility with biomimetic coatings

出版社

WILEY
DOI: 10.1002/jbm.b.31742

关键词

magnesium; corrosion; cell culture; simulated body fluid; cytotoxicity

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

The use of magnesium and its alloys as biodegradable metallic implant materials requires that their corrosion behavior can be controlled. We tailored the Mg release kinetics and cell adhesion properties of commercially pure Mg by chemical surface treatments in simulated body fluid, in Dulbecco's Modified Eagle's cell culture medium in the presence or absence of fetal bovine serum (FBS), or in 100% FBS. He La cells were cultured for 24 h on these Mg surfaces to characterize their biocompatibility. Cell density on all treated surfaces was significantly increased compared with a polished Mg surface, where almost no cells survived. This low biocompatibility of pure Mg was not caused by the high Mg ion release with concentrations of up to 300 mg/L in the cell culture medium after 24 h, as cells grown on a glass substrate showed no adverse reactions to high Mg ion concentrations. Rather, the most critical factor for cell adhesion was a sufficiently reduced initial dissolution rate of the surface. A comparison among all surface treatments showed that an incubation of the Mg samples in cell culture medium gave the lowest dissolution rate and resulted in the best cell adhesion and spreading behavior. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 96B: 84-90, 2011.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据