4.4 Review

Materials, fluid dynamics, and solid mechanics aspects of coronary artery stents: A state-of-the-art review

出版社

WILEY
DOI: 10.1002/jbm.b.31028

关键词

vascular stents; cardiovascular; computational fluid dynamics; finite element analysis

向作者/读者索取更多资源

It is well known that, across all populations (based on geographic location, race, ethnicity, age, and sex), coronary artery disease (CAD) is the single most common cause of death. The commonly performed revascularization procedures for the treatment of symptomatic CAD are percutaneous transluminal coronary angioplasty (PTCA) by itself or followed by the deployment of either a bare-metal stent (BMS) or a drug-eluting stent (DES). In the latter type, a drug that is either embedded in polymeric or nonpolymeric coating(s) on the stent surface or directly attached to the stent surface ellutes into the blood stream at a controlled rate over a period of time, typically 14-30 days. Over the years, there has been a steady decline in the use of PTCA and a concomitant sharp increase in the use of stents, with DESs being the predominant choice in the last 3 years. The present contribution represents a critical review of the literature on the materials, fluid dynamics, and solid mechanics aspects of both BMSs and DESs, with special reference to in-stent restenosis and in-stent thrombosis, these being risks that present commonly. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据