4.4 Article

Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications

出版社

WILEY
DOI: 10.1002/jbm.b.31040

关键词

hydrogel; bacterial cellulose; mechanical properties; anisotropy; nanocomposite; soft tissue; vascular prosthesis

向作者/读者索取更多资源

Compliance mismatch between the synthetic graft and the surrounding native tissue has been reported as a major factor in ultimate failure of the currently used cardiovascular graft replacements. Thus, developing biomaterials that display close mechanical properties as the tissue it is replacing is an important objective in biomedical devices design. Polyvinyl alcohol (PVA) is a biocompatible hydrogel with characteristics desired for biomedical applications. It can be crosslinked by a low temperature thermal cycling process. By using a novel thermal processing method under an applied strain and with the addition of a small amount of bacterial cellulose (BC) nanofibers, an anisotropic PVA-BC nanocomposite was created. The stress-strain tensile properties of porcine aorta were closely matched in both the circumferential and the axial directions by one type of anisotropic PVA-BC nanocomposite (10% PVA with 0.3% BC at 75% initial strain and cycle 2) within physiological range, with improved resistance to further stretch beyond physiological strains. The PVA-BC nanocomposite gives a broad range of mechanical properties, including anisotropy, by controlling material and processing parameters. PVA-BC nanocomposites with controlled degree of anisotropy that closely match the mechanical properties of the soft tissue it might replace, ranging from cardiovascular to other connective tissues, can be created. (c) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据