4.5 Article

Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 103, 期 5, 页码 1632-1639

出版社

WILEY
DOI: 10.1002/jbm.a.35300

关键词

nanoparticles; radiosensitization; prostate cancer; NU7441; targeting

资金

  1. National Institute of Health [U01 HL111146, R01 HL118498, R21 1CA175879, W81XWH-11-1-0270]

向作者/读者索取更多资源

One of the many issues of using radiosensitizers in a clinical setting is timing daily radiation treatments to coincide with peak drug concentration in target tissue. To overcome this deficit, we have synthesized a novel nanoparticle (NP) system consisting of poly (lactic-co-glycolic acid) (PLGA) NPs conjugated with prostate cancer cell penetrating peptide-R11 and encapsulated with a potent radio-sensitizer 8-dibenzothiophen-4-yl-2-morpholin-4-yl-chromen-4-one (NU7441) to allow prostate cancer-specific targeting and sustained delivery over 3 weeks. Preliminary characterization studies showed that the R11-conjugated NPs (R11-NU7441 NPs) had an average size of about 274 +/- 80 nm and were stable for up to 5 days in deionized water and serum. The NPs were cytocompatible with immortalized prostate cells (PZ-HPV-7). Further, the particles showed a bi-phasic release of encapsulated NU7441 and were taken up by PC3 prostate cancer cells in a dose- and magnetic field-dependent manner while not being taken up in nonprostate cancer cell lines. In addition, R11-NU7441 NPs were effective radiation sensitizers of prostate cancer cell lines in vitro. These results thus demonstrate the potential of R11-conjugated PLGA NPs as novel platforms for targeted radiosensitization of prostate cancer cells. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1632-1639, 2015.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据