4.5 Article

Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 102, 期 9, 页码 3186-3195

出版社

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.34990

关键词

microvascular tissue engineering; stiffness; vascular physiology; extracellular matrix; perfusion

资金

  1. National Heart, Lung, and Blood Institute [HL092335]
  2. Boston University Undergraduate Research Opportunities Program

向作者/读者索取更多资源

The low stiffness of reconstituted collagen hydrogels has limited their use as scaffolds for engineering implantable tissues. Although chemical crosslinking has been used to stiffen collagen and protect it against enzymatic degradation in vivo, it remains unclear how crosslinking alters the vascularization of collagen hydrogels. In this study, we examine how the crosslinking agents genipin and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide alter vascular stability and function in microfluidic type I collagen gels in vitro. Under moderate perfusion (similar to 10 dyn/cm(2) shear stress), tubes of blood endothelial cells (ECs) exhibited indistinguishable stability and barrier function in untreated and crosslinked scaffolds. Surprisingly, under low perfusion (similar to 5 dyn/cm(2) shear stress) or nearly zero transmural pressure, microvessels in crosslinked scaffolds remained stable, while those in untreated gels rapidly delaminated and became poorly perfused. Similarly, tubes of lymphatic ECs under intermittent flow were more stable in crosslinked gels than in untreated ones. These effects correlated well with the degree of mechanical stiffening, as predicted by analysis of fracture energies at the cell-scaffold interface. This work demonstrates that crosslinking of collagen scaffolds does not hinder normal EC physiology; instead, crosslinked scaffolds promote vascular stability. Thus, routine crosslinking of scaffolds may assist in vascularization of engineered tissues. (C) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据