4.5 Article

Size-dependent cellular toxicity of silver nanoparticles

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 100A, 期 4, 页码 1033-1043

出版社

WILEY
DOI: 10.1002/jbm.a.34053

关键词

silver nanoparticles; cell toxicity; in vitro; size dependence; endocytosis

资金

  1. Priority Research Centers Program [2009-0093829]
  2. WCU (World Class University) through National Research Foundation (NRF), Ministry of Education, Science and Technology [R31-10069]

向作者/读者索取更多资源

Silver nanoparticles (AgNPs) have found a variety of uses including biomedical materials; however, studies of the cytotoxicity of AgNPs by size effects are only in the beginning stage. In this study, we examined the size-dependent cellular toxicity of AgNPs using three different characteristic sizes (similar to 10, 50, and 100 nm) against several cell lines including MC3T3-E1 and PC12. The cytotoxic effect determined based on the cell viability, intracellular reactive oxygen species generation, lactate dehydrogenase release, ultrastructural changes in cell morphology, and upregulation of stress-related genes (ho-1 and MMP-3) was fairly size- and dose-dependent. In particular, AgNPs stimulated apoptosis in the MC3T3-E1 cells, but induced necrotic cell death in the PC12 cells. Furthermore, the smallest sized AgNPs (10 nm size) had a greater ability to induce apoptosis in the MC3T3-E1 cells than the other sized AgNPs (50 and 100 nm). These data suggest that the AgNPs-induced cytotoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticles for biomedical uses. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2012.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据