4.5 Article

Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 94A, 期 4, 页码 1124-1132

出版社

WILEY
DOI: 10.1002/jbm.a.32784

关键词

porous bacterial cellulose; scaffolds; human chondrocytes; cartilage regeneration; tissue engineering

资金

  1. EC [NMP3-CT-2004-500283]
  2. Swedish Research Council [621-2005-6121]

向作者/读者索取更多资源

Regeneration of articular cartilage damage is an area of great interest due to the limited ability of cartilage to self-repair. The latest cartilage repair strategies are dependent on access to biomaterials to which chondrocytes can attach and in which they can migrate and proliferate, producing their own extracellular matrix. In the present study, engineered porous bacterial cellulose (BC) scaffolds were prepared by fermentation of Acetobacter xylinum (A. xylinum) in the presence of slightly fused wax particles with a diameter of 150-300 mu m, which were then removed by extrusion. This porous material was evaluated as a scaffold for cartilage regeneration. Articular chondrocytes from young adult patients as well as neonatal articular chondrocytes were seeded with various seeding techniques onto the porous BC scaffolds. Scanning electron microscopy (SEM) analysis and confocal microscopy analysis showed that cells entered the pores of the scaffolds and that they increasingly filled out the pores over time. Furthermore, DNA analysis implied that the chondrocytes proliferated within the porous BC. Alcian blue van Gieson staining revealed glycosaminoglycan (GAG) production by chondrocytes in areas where cells were clustered together. With some further development, this novel biomaterial can be a suitable candidate for cartilage regeneration applications. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 94A: 1124-1132, 2010.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据