4.5 Article

Controlled induction of distributed microdeformation in wounded tissue via a microchamber array dressing

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.32840

关键词

microfabrication; microfluidic devices; negative pressure wound therapy; micromechanical forces; wound healing

资金

  1. National Institutes of Health [UL1RR 025758-01, P41 EB002503]

向作者/读者索取更多资源

Mechanical stimuli are known to play an important role in determining the structure and function of living cells and tissues. Recent studies have highlighted the role of mechanical signals in mammalian dermal wound healing. However, the biological link between mechanical stimulation of wounded tissue and the subsequent cellular response has not been fully determined. The capacity for researchers to study this link is partially limited by the lack of instrumentation capable of applying controlled mechanical stimuli to wounded tissue. The studies outlined here tested the hypothesis that it was possible to control the magnitude of induced wound tissue deformation using a microfabricated dressing composed of an array of open-faced, hexagonally shaped microchambers rendered in a patch of silicone rubber. By connecting the dressing to a single vacuum source, the underlying wounded tissue was drawn up into each of the microchambers, thereby inducing tissue deformation. For these studies, the dressings were applied to full-thickness murine dermal wounds with 200 mmHg vacuum for 12 h. These studies demonstrated that the dressing was capable of inducing wound tissue deformation with values ranging from 11 to 29%. Through statistical analysis, the magnitude of the induced deformation was shown to be a function of both microchamber height and width. These results demonstrated that the dressing was capable of controlling the amount of deformation imparted in the underlying tissue. By allowing the application of mechanical stimulation with varying intensities, such a dressing will enable the performance of sophisticated mechanobiology studies in dermal wound healing. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 333-340, 2010.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据