4.5 Article

Enhanced smooth muscle cell adhesion and proliferation on protein-modified polycaprolactone-based copolymers

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.31889

关键词

biodegradable polymers; cell adhesion; cell proliferation; aminolysis; protein immobilization

资金

  1. NSERC Discovery Grant
  2. NSERC Strategic Grant

向作者/读者索取更多资源

Smooth muscle cells (SMC) were cultured for up to 6 days on copolymer films fabricated from a PCL-PEG-PCL block copolymer or P(epsilon-CL-co-D,L-LA)-PEG-P(epsilon-CL-co-D,L-LA), named P(100/0) and P(70/30), respectively. The films were modified by aminolysis using 1,6-hexanediamine, and fibronectin, fibrinogen, or fibrin layers were subsequently immobilized by physisorption or by covalent Coupling using imidoester chemistry. Immobilization of all the tested proteins resulted in significantly enhanced cell adhesion on these polymers. Moreover, we found that covalently immobilized proteins supported significantly greater cell proliferation than physisorbed proteins over 6 days. SMC cultured on P(100/0) films modified by covalently attached fibronectin or fibrin layers proliferated at a rate comparable to that observed on control tissue culture polystyrene. The proposed surface modification schemes were much less efficient in improving cell attachment and proliferation on P(70/30) films. However, prewetting P(70/30) with a phosphate buffer prior to aminolysis significantly improved cell numbers following immobilization of fibronectin. Immunostaining of smooth muscle-specific alpha-actin of SMC grown on protein-modified P(100/0) 8 h and 48 h after cell seeding, confirmed preserved SMC phenotype on all modified surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 88A: 520-530, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据