4.5 Review

Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.32059

关键词

electrospun nanofiber; human mesenchymal stem cells; polyurethane; polydimethylsiloxane; cell chip

资金

  1. Ministry of Health and Welfare [02-PJ3-PG6-EV10-0001]
  2. Korea Science and Engineering Foundation [K20601000002-07E010000230]

向作者/读者索取更多资源

Mimicking cellular microenvironments by MEMS technology is one of the emerging research areas. Integrated biomimetic systems with nanofiber polymer networks and microfluidic chips were fabricated and cellular behaviors were observed by changing Surface characteristics of nanofibers and flow rates of microchannels. Modification of polyurethane nanofiber surfaces were achieved by grafting acrylic acid with plasma treatment and these nanofiber matrices were employed in a poly(dimethylsiloxane) based microfluidic chip. The surface characteristics of both electrospun nanofiber matrices was evaluated by measuring contact angle, porosity, and chemical structure using attenuated total reflection-Fourier transform infrared spectrometry. After modification, a terminal carboxyl group formed on the nanofiber Surface and the wettability increased significantly. Human MSCs were seeded on the nanofiber matrices and a morphological investigation with actin filament staining and scanning electron microscopy was performed. A proliferation test by WST-1 and Live/Dead assay were performed to investigate the cell Culture environment. It was observed that the cells on the AA-grafted nanofibers spread and proliferate compared to untreated nanofibers. It has also shown that flow rates in the microchannels played an important role for cell proliferation (Sim et al., Lab Chip 2007;7:1775-1782). Integration of nanofiber matrices into the microchannels provides the useful tools for mimicking cellular microenvironments and elucidating basic questions of cell and ECM assembly and interactions. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 619-628, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据