4.5 Article

Resorbable polymeric scaffolds for bone tissue engineering: The influence of their microstructure on the growth of human osteoblast-like MG 63 cells

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.31977

关键词

resorbable polymers; poly(L-lactide-co-glycolide); scaffolds; microstructure; porosity; tissue engineering; osteoblast-like MG-63 cells; cell adhesion; cell proliferation; cell differentiation

资金

  1. Polish Ministry of Science [3 T08D 019 28]
  2. AGH, University of Science and Technology [10.10.160.253]
  3. Grant Agency of the Czech Republic [1.06/06/1576]
  4. Academy of Sciences of the Czech Republic [KAN400480701]

向作者/读者索取更多资源

Degradable three-dimensional porous scaffolds applicable as cell carriers for bone tissue engineering were developed by an innovative solvent casting/particulate leaching technique from poly(L-lactide-co-glycolide) (PLG). Three types of PLG scaffolds were prepared, and these had the same high porosity (83%) but increasing diameter of the pores (180-200 mu m, 250-320 mu m, and 400-600 mu m) and increasing pore interconnectivity. The colonization of the scaffolds with human osteoblast-like MG 63 cells was then studied in vitro in a conventional static cell culture system. The number of cells growing on the scaffolds on days 1 and 7 after seeding was highest in the material with the largest pore diameter, but on day 15, the differences among the scaffolds disappeared. Confocal microscopy revealed that on day 1 after seeding, the cells penetrated to a depth of 490 +/- 100 mu m, 720 +/- 1.70 mu m, and 720 +/- 120 mu m into the scaffolds of small, medium, and large pore size, respectively. Incorporation of bromodeoxyuridine into newly synthesized DNA and the concentration of vinculin, beta-actin, osteopontin, and osteocalcin in cells on the scaffolds of all pore sizes were similar to the values obtained on standard tissue culture polystyrene, which indicated good biocompatibility of the scaffolds. These results Suggest that all scaffolds could serve as good carriers for bone cells, although the quickest colonization with cells was found in the scaffolds with the largest pore diameter from 400 to 600 mu m. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 89A: 432-443,2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据