4.5 Article

Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.32095

关键词

amino acid; L-tyrosine; polyurethanes; biomaterial; tissue engineering

向作者/读者索取更多资源

The use of amino acid based polymers for biomaterial applications enhance biocompatibility and ensure biodegradability. Two polyurethanes based on L-tyrosine based diphenolic dipeptide, desaminotyrosyl tyrosine hexyl ester as chain extender are synthesized with polyethylene glycol (PEG) and polycaprolactone diol (PCL) as soft segment and hexamethylene diisocyanate as diisocyanate. The chemical structure and molecular characteristics of the polymers were studied by H-1 NMR, FTIR, and gel permeation chromatography. Results of DSC and TGA analysis were used for examining the thermal behavior of the polyurethanes. In addition, DSC results were used to analyze the morphology of the polymers, which shows characteristic microphase behavior of the polyurethanes. The tensile properties of the polyurethanes are primarily controlled by the soft segment and are higher in PCL based polymers. Contact angle, water vapor permeation, release of model drug, and water absorption characteristics of the polymers were studied and analyzed in terms of structure of the polyurethanes. In vitro degradation studies show that PEG based polyurethane is more degradable than PCL based polyurethane. The difference in the soft segment structure offers significant variation in the properties of the polyurethanes. These polyurethanes show the potential for use in a variety of biomaterial applications including tissue engineering. (C) 2008 Wiley Periodical, Inc. J Biomed Mater Res 90A: 263-271, 2009.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据