4.5 Article

Stem cell based tissue engineering for meniscus repair

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.31480

关键词

meniscus; hyaluronan scaffolds; collagen scaffolds; tissue engineering; mesenchymal stem cell

资金

  1. NIAMS NIH HHS [1 R01 AR-48132-01] Funding Source: Medline

向作者/读者索取更多资源

Defects of the meniscus greatly alter knee function and predispose the joint to degenerative changes. The purpose of this study was to test a recently developed cell-scaffold combination for the repair of a critical-size defect of the rabbit medial meniscus. A bilateral, complete resection of the pars intermedia of the medial meniscus was performed in 18 New Zealand White rabbits. A hyaluronan/gelatin composite scaffold was implanted into the defect of one knee of 6 rabbits and the contralateral defect was left untreated. Scaffolds loaded with autologous marrow-derived mesenchymal stem cells and cultured in a chondrogenic medium for 14 days were implanted in a second series of 12 rabbits. Empty scaffolds were implanted in the contralateral knees. Meniscii were harvested at 12 weeks. Untreated defects had a muted fibrous healing response. Defects treated with cell-free implants showed also predominantly fibrous tissue whereas fibrocartilage was present in some scaffolds. The cross-sectional width of the repair tissue after treatment with cell-free scaffolds was significantly greater than controls (p < 0.05). Pre-cultured implants integrated with the host tissue and 8 of 11 contained meniscus-like fibrocartilage, compared with 2 of 11 controls (p < 0.03). The mean cross-sectional width of the pre-cultured implant repair tissue was greater than controls (p < 0.004). This study demonstrates the repair of a critical size meniscal defect with a stem cell and scaffold based tissue engineering approach. (C) 2007 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据