4.5 Article

Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.31800

关键词

polymer architecture; pegylated polymers; surface properties; protein binding; phagocytosis; AFM phase imaging

资金

  1. Natural Sciences and Engineering Council (NSERC), Canada

向作者/读者索取更多资源

The aim of the present Study was to evaluate the cellular interaction of nanoparticles (NPs) prepared from different pegylated polymers and elucidate the effect of polymer architecture, for instance, grafted versus block copolymer on their cellular uptake. Fluorescein-labeled NPs Of four different polymers, viz., poly(D,L-lactide) (PLA), poly(ethylene glycol)(1%)-graft-poly(D,L-lactide) (PEG(1%)-g-PLA), poly(ethylene glycol)(5%)-graft-poly(D, L-lactide) (PEG(5%)-g-PLA), and (poly(D,L-lactide)-block-poly(ethylene glycol)-block-poly(D,L-lactide))(n) multiblock copolymer (PLA-PEG-PLA)(n) were prepared. These NPs were characterized for their size, zeta-potential, and surface morphology. XPS studies revealed possibility of chemical interaction between PLA -COOH groups and PVA -OH groups, thus making it difficult to be washed off the NP surface completely. Grafted polymer NPs showed more surface PEG coverage than (PLA-PEG-PLA)(n) despite of their comparatively lower PEG content. The results of surface properties were translated into protein binding showing least amount of proteins bound to grafted copolymer NPs as against multiblock copolymer NPs. NPs showed no toxicity to RAW 264.7 cells. Cellular uptake of NPs was temperature and concentration-dependent as well as involved clathrin-mediated processes. Thus, this study confirms the importance of polymer architecture in determining the surface properties and hence, protein binding and cellular interactions of NPs. Also, it was shown that grafted copolymer NPs reduced macrophage uptake as compared to multiblock copolymer although mechanisms different than phagocytosis were involved. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 885-895, 2008

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据