4.5 Review

What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?

期刊

JOURNAL OF BIOMECHANICS
卷 46, 期 14, 页码 2342-2355

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2013.07.014

关键词

Finite element model studies; Intervertebral disc; Elasto-static; Elasto-dynamics; Multi-phasic transient; Transport

向作者/读者索取更多资源

Finite element analysis is a powerful tool routinely used to study complex biological systems. For the last four decades, the lumbar intervertebral disc has been the focus of many such investigations. To understand the disc functional biomechanics, a precise knowledge of the disc mechanical, structural and biochemical environments at the microscopic and macroscopic levels is essential. In response to this need, finite element model studies have proven themselves as reliable and robust tools when combined with in vitro and in vivo measurements. This paper aims to review and discuss some salient findings of reported finite element simulations of lumbar intervertebral discs with special focus on their relevance and implications in disc functional biomechanics. Towards this goal, the earlier investigations are presented, discussed and summarized separately in three distinct groups of elastic, multi-phasic transient and transport model studies. The disc overall response as well as the relative role of its constituents are markedly influenced by loading rate, magnitude, combinations/preloads and posture. The nucleus fluid content and pressurizing capacity affect the disc compliance, annulus strains and failure sites/modes. Biodynamics of the disc is affected by not only the excitation characteristics but also preloads, existing mass and nucleus condition. The role of fluid pressurization and collagen fiber stiffening diminish with time during diurnal loading. The endplates permeability influences the time-dependent response of the disc in both loaded and unloaded recovery phases. The transport of solutes is substantially influenced by the disc size, tissue diffusivity and endplates permeability. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据