4.5 Article

Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling

期刊

JOURNAL OF BIOMECHANICS
卷 45, 期 5, 页码 790-798

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2011.11.019

关键词

Biaxial; Human; Coronary; Carotid; Diseased; Mechanical stress and strain

资金

  1. NIH [R01 EB004759]

向作者/读者索取更多资源

Computational models have the potential to provide precise estimates of stresses and strains associated with sites of coronary plaque rupture. However, lack of adequate mathematical description of diseased human vessel wall mechanical properties is hindering computational accuracy. The goal of this study is to characterize the behavior of diseased human coronary and carotid arteries using planar biaxial testing. Diseased coronary specimens exhibit relatively high stiffness (50-210 kPa) and low extensibility (1-10%) at maximum equibiaxial stress (250 kPa) compared to human carotid specimens and values commonly reported for porcine coronary arteries. A thick neointimal layer observed histologically appears to be associated with heightened stiffness and the direction of anisotropy of the specimens. Fung. Choi-Vito and modified Mooney-Rivlin constitutive equations fit the multiaxial data from multiple stress protocols well, and parameters from representative coronary specimens were utilized in a finite element model with fluid-solid interactions. Computed locations of maximal stress and strain are substantially altered, and magnitudes of maximum principal stress (48-65 kPa) and strain (6.5-8%) in the vessel wall are lower than previously predicted using parameters from uniaxial tests. Taken together, the results demonstrate the importance of utilizing disease-matched multiaxial constitutive relationships within patient-specific computational models to accurately predict stress and strain within diseased coronary arteries. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据