4.7 Article

Diet-Induced Obesity in the Selenocysteine Lyase Knockout Mouse

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 23, 期 10, 页码 761-774

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2015.6277

关键词

-

资金

  1. National Institutes of Health [R01-DK47320, G12-MD007601]
  2. Pilot Project Award [G12-MD007601]

向作者/读者索取更多资源

Aims: Selenocysteine lyase (Scly) mediates selenocysteine decomposition. It was previously demonstrated that, upon adequate caloric intake (12% kcal fat) and selenium deficiency, disruption of Scly in mice leads to development of metabolic syndrome. In this study, we investigate the effect of a high-fat (45% kcal) selenium-adequate diet in Scly knockout (KO) mice on development of metabolic syndrome. Involvement of selenoproteins in energy metabolism after Scly disruption was also examined in vitro in the murine hepatoma cell line, Hepa1-6, following palmitate treatment. Results: Scly KO mice were more susceptible to diet-induced obesity than their wild-type counterparts after feeding a high-fat selenium-adequate diet. Scly KO mice had aggravated hyperinsulinemia, hypercholesterolemia, glucose, and insulin intolerance, but unchanged inflammatory cytokines and expression of most selenoproteins, except increased serum selenoprotein P (Sepp1). Scly KO mice also exhibited enhanced hepatic levels of pyruvate and enzymes involved in the regulation of pyruvate cycling, such as pyruvate carboxylase (Pcx) and pyruvate dehydrogenase (Pdh). However, in vitro silencing of Scly in Hepa1-6 cells led to diminished Sepp1 expression, and concomitant palmitate treatment decreased Pdh expression. Innovation: The role of selenium in lipid metabolism is recognized, but specific selenium-dependent mechanisms leading to obesity are unclear. This study uncovers that Scly has a remarkable effect on obesity and metabolic syndrome development triggered by high-fat exposure, independent of the expression of most selenoproteins. Conclusion: Diet-induced obesity in Scly KO mice is aggravated, with effects on pyruvate levels and consequent activation of energy metabolism independent of selenoprotein levels. Antioxid. Redox Signal. 23, 761-774.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据