4.5 Article

Measurement of the hyperelastic properties of ex vivo brain tissue slices

期刊

JOURNAL OF BIOMECHANICS
卷 44, 期 6, 页码 1158-1163

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2011.01.019

关键词

Finite element method; Surgical simulation; Brain mechanical properties; Hyperelastic modeling; Elastography

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

The elastic and hyperelastic properties of brain tissue are of interest to the medical research community as there are several applications where accurate characterization of these properties is crucial for an accurate outcome. The linear response is applicable to brain elastography, while the non-linear response is of interest for surgical simulation programs. Because of the biological differences between gray and white matter, it is reasonable to expect a difference in their mechanical properties. The goal of this work is to characterize the elastic and hyperelastic properties of the brain gray and white matter. In this method, force-displacement data of these tissues were acquired from 25 different brain samples using an indentation apparatus. These data were processed with an inverse problem algorithm using finite element method as the forward problem solver. Young's modulus and the hyperelastic parameters corresponding to the commonly used Polynomial, Yeoh, Arruda-Boyce, and Ogden models were obtained. The parameters characterizing the linear and non-linear mechanical behavior of gray and white matters were found to be significantly different. Young's modulus was 1787 +/- 186 and 1195 +/- 157 Pa for white matter and gray matter, respectively. Among hyperelastic models, due to its accuracy, fewer parameters and shorter computational time requirements, Yeoh model was found to be the most suitable. Due to the significant differences between the linear and non-linear tissue response, we conclude that incorporating these differences into brain biomechanical models is necessary to increase accuracy. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据