4.5 Article

Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles

期刊

JOURNAL OF BIOMECHANICS
卷 44, 期 1, 页码 109-115

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2010.08.033

关键词

Length-tension relationship; Muscle architecture; Muscle Function; Modeling

资金

  1. Department Veterans Affairs
  2. NIH/NICHD [HD31476, HD048501, HD050837]
  3. Grants-in-Aid for Scientific Research [22591658] Funding Source: KAKEN

向作者/读者索取更多资源

An a priori model of the whole active muscle length-tension relationship was constructed utilizing only myofilament length and serial sarcomere number for rabbit tibialis anterior (TA), extensor digitorum longus (EDL), and extensor digitorum II (EDII) muscles. Passive tension was modeled with a two-element Hill-type model. Experimental length-tension relations were then measured for each of these muscles and compared to predictions. The model was able to accurately capture the active-tension characteristics of experimentally-measured data for all muscles (ICC=0.88 +/- 0.03). Despite their varied architecture, no differences in predicted versus experimental correlations were observed among muscles. In addition, the model demonstrated that excursion, quantified by full-width-at-half-maximum (FWHM) of the active length-tension relationship, scaled linearly (slope=0.68) with normalized muscle fiber length. Experimental and theoretical FWHM values agreed well with an intraclass correlation coefficient of 0.99 (p < 0.001). In contrast to active tension, the passive tension model deviated from experimentally-measured values and thus, was not an accurate predictor of passive tension (ICC=0.70 +/- 0.07). These data demonstrate that modeling muscle as a scaled sarcomere provides accurate active functional but not passive functional predictions for rabbit TA, EDL, and EDII muscles and call into question the need for more complex modeling assumptions often proposed. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据