4.5 Article

Stabilizing to disruptive transition of focal adhesion response to mechanical forces

期刊

JOURNAL OF BIOMECHANICS
卷 43, 期 13, 页码 2524-2529

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2010.05.019

关键词

Cell adhesion; Focal adhesion; Integrin clustering; Adhesion growth; Cell reorientation; Integrin-ligand bonds

资金

  1. Chinese Academy of Sciences [KJCX2-YW-M04, KJCX-SW-L08]
  2. National Natural Science Foundation of China [10628205, 10732050, 10872115]
  3. National Basic Research Program of China [2007CB936803]

向作者/读者索取更多资源

Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据