4.5 Article

Strain-energy function and three-dimensional stress distribution in esophageal biomechanics

期刊

JOURNAL OF BIOMECHANICS
卷 43, 期 14, 页码 2753-2764

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2010.06.007

关键词

Constitutive model; Heterogeneity; Inflation/extension; Stretch field; Anisotropy

向作者/读者索取更多资源

Knowledge of the transmural stress and stretch fields in esophageal wall is necessary to quantify growth and remodeling, and the response to mechanically based clinical interventions or traumatic injury, but there are currently conflicting reports on this issue and the mechanical properties of intact esophagus have not been rigorously addressed. This paper offers multiaxial data on rabbit esophagus, warranted for proper identification of the 3D mechanical properties. The Fung-type strain-energy function was adopted to model our data for esophagus, taken as a thick-walled (1 or 2-layer) tubular structure subjected to inflation and longitudinal extension. Accurate predictions of the pressure-radius-force data were obtained using the 1-layer model, covering a broad range of extensions: the calculated material parameters indicated that intact wall was equally stiff as mucosa-submucosa, but stiffer than muscle in both principal axes, and tissue was stiffer longitudinally, concurring our histological findings (Stavropoulou et al., journal of Biomechanics. 42 (2009) 2654-2663). Employing the material parameters of individual layers, with reference to their zero-stress state, a reasonable fit was obtained to the data for intact wall, modeled as a 2-layer tissue. Different from the stress distributions presented hitherto in the esophagus literature, consideration of residual stresses led to less dramatic homogenization of stresses under loading. Comparison of the 1- and 2-layer models of esophagus demonstrated that heterogeneity induced a more uniform distribution of residual stresses in each layer, a discontinuity in circumferential and longitudinal stresses at the interface among layers, and a considerable rise of stresses in mucosa, with a reduction in muscle. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据