4.5 Article

Tibiofemoral kinematics and condylar motion during the stance phase of gait

期刊

JOURNAL OF BIOMECHANICS
卷 42, 期 12, 页码 1877-1884

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2009.05.003

关键词

Knee kinematics; Gait; Stance phase; Condylar motion; Fluoroscopy; Femoral rollback

资金

  1. National Institute of Health [R01 AR 052408, R21 AR051078]
  2. Department of Orthopaedic Surgery at Massachusetts General Hospital

向作者/读者索取更多资源

Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior-posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion-extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4 +/- 2.0 mm vs. 7.4 +/- 6.1 mm, respectively; p < 0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait). (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据