4.5 Article

A study of the interface strength between protein and mineral in biological materials

期刊

JOURNAL OF BIOMECHANICS
卷 41, 期 2, 页码 259-266

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2007.09.022

关键词

biological materials; bone; protein-mineral interface; nanoscale; fracture strength; size effect

向作者/读者索取更多资源

Bone, tooth, mineralized tendon and sea shells are nanocomposites of protein and mineral with superior mechanical properties. As the mineral is so small at nanoscale, the volume fraction of the protein-mineral interface in the bulk materials can be enormously large; therefore, the mechanics of the interface should be critically important for the integrity of these biomaterials. Currently, people do not have a good understanding of the interface between protein and mineral, a hybrid interface between organic and inorganic constituents in biological materials. In this paper, a tension-shear chain (TSC) model is introduced into the Dugdale model for estimating the fracture energy of biomaterials. The strength of the hybrid interface is then studied with a soft-hard bi-layer fracture model, by which we find for the first time that the interface strength depends on both the size and geometry of the mineral crystal, and has been highly optimized through the miniaturization of mineral at nanoscale. This study may provide important insights into the mechanics of bone and tooth at small scale for tissue engineering in biomedical applications. (c) 2007 Elsevier Ltd. Ail rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据