4.5 Article

Anti-biofouling Sulfobetaine Polymer Thin Films on Silicon and Silicon Nanopore Membranes

期刊

出版社

VSP BV
DOI: 10.1163/092050609X12578498982998

关键词

Anti-biofouling; zwitterionic polymer; silicon nanopore membranes; protein adsorption

资金

  1. National Institute of Biomedical Imaging and Bioengineering, NIH [R01 EB008049]
  2. Cleveland Clinic Department of Biomedical Engineering

向作者/读者索取更多资源

Silicon nanopore membranes (SNM) with monodisperse pore size distributions have potential applications in bioartificial kidneys. A protein resistant thin film coating on the SNM is required to minimize biofouling and, hence, enhance the performance efficiency of SNM. In this work, a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA), was used to coat silicon and SNM substrates via a surface initiated atom transfer radical polymerization method. The polySBMA-coated surfaces were characterized using contact angle goniometry, X-ray photoelectron spectroscopy (XPS), ellipsometry and scanning electron microscopy (SEM). Resistance of the coatings to protein fouling was examined by measurement of fibrinogen adsorption from fibrinogen solution and human plasma on coated silicon surfaces. Results showed that the polySBMA coating suppresses non-specific adsorption of fibrinogen. The protein-repellent property of polySBMA thin film coating is comparable to that of PEG-based coatings. Analysis of the surfaces by XPS indicated that the films remained stable when stored under physiologic conditions over a 4-week period. (C) Koninklijke Brill NV, Leiden, 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据