4.5 Article

Electrospun PCL in Vitro: a Microstructural Basis for Mechanical Property Changes

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856209X416485

关键词

Biomaterials; polycaprolactone; electrospinning; polymer scaffold; in vitro test; in vivo test

资金

  1. National Science Foundation [EEC-0425626]

向作者/读者索取更多资源

Polymeric tissue-engineering scaffolds must provide mechanical support while host-appropriate cells populate the structure and deposit extracellular matrix (ECM) components specific to the organ targeted for replacement. Even though this concept is widely shared, changes in polymer modulus and other mechanical properties versus biological exposure are largely unknown. This work shows that specific interactions of biological milieu with electrospun scaffolds can exert control over scaffold modulus. The net effects of biological and non-biological environments on electrospun structures following 7 and 28 days of in vitro exposure are established. Reduction of modulus, ultimate tensile strength and elongation occurs without the apparent involvement of classic hydrolysis mechanisms. We describe this phenomenon as deposition-induced inhibition of nanofiber rearrangement. This phenomenon shows that both mechanical and morphological characterization of electrospun structure under load in biological environments is required to tailor scaffold design to pursue specific tissue-engineering goals. (C) Koninklijke Brill NV, Leiden, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据