4.5 Article

Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856208784089599

关键词

biodegradable; elastomer; electrospinning; polyurethane; scaffold; urinary bladder matrix

资金

  1. NHLBI NIH HHS [R01 HL069368, HL069368, R01 HL069368-04, R01 HL069368-03] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL069368] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Synthetic materials can be electrospun into submicron or nanofibrous scaffolds to mimic extracellular matrix (ECM) scale and architecture with reproducible composition and adaptable mechanical properties. However, these materials lack the bioactivity present in natural ECM. ECM-derived scaffolds contain bioactive molecules that exert in vivo mimicking effects as applied for soft tissue engineering, yet do not possess the same flexibility in mechanical property control as some synthetics. The objective of the present study was to combine the controllable properties of a synthetic, biodegradable elastomer with the inherent bioactivity of an ECM derived scaffold. A hybrid electrospun scaffold composed of a biodegradable poly(ester-urethane)urea (PEUU) and a porcine ECM scaffold (urinary bladder matrix, UBM) was fabricated and characterized for its bioactive and physical properties both in vitro and in vivo. Increasing amounts of PEUU led to linear increases in both tensile strength and breaking strain while UBM incorporation led to increased in vitro smooth muscle cell adhesion and proliferation and in vitro mass loss. Subcutaneous implantation of the hybrid scaffolds resulted in increased scaffold degradation and a large cellular infiltrate when compared with electrospun PEUU alone. Electrospun UBM/PEUU combined the attractive bioactivity and mechanical features of its individual components to result in scaffolds with considerable potential for soft tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据