4.4 Article

A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers

期刊

JOURNAL OF BIOMATERIALS APPLICATIONS
卷 29, 期 1, 页码 93-103

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328213515734

关键词

Apatite; microcarriers; osteogenesis; scalable; stem cell

资金

  1. Singapore Ministry of Health's National Medical Research Council under its NMRC New Investigator Grant [NIG10nov032]

向作者/读者索取更多资源

Bone tissue engineering, which relies on the interactions between stem cells and suitable scaffold materials, represents a highly desirable alternative to currently used allograft or autograft strategies for the treatment of bone defects caused by injury or disease, with one of the major challenges being to generate sufficient quantities of stem cells to bring about the intended therapeutic effect. However, conventional cell culture to achieve sufficient cell numbers faces limitations of low efficiency and diminished efficacy of stem cells due to repeated passaging. Furthermore, current microcarriers available may not be suitable for therapeutic implantation. Here, the authors featured an apatite-based microcarrier intended for bone tissue engineering applications. These apatite microcarriers have a diameter of similar to 230 mu m, and exhibited porous and rough surface morphology. Peaks obtained from X-ray diffractometry (XRD) corresponded to hydroxyapatite (HA) with high crystallinity. Fourier transform infrared spectrophotometry (FTIR) showed that no residues of alginate remained, and all bands observed belong to phosphate and hydroxyl groups of HA. To evaluate the cytocompatibility of these microcarriers, in vitro proliferation studies were conducted and compared with conventional monolayer as well as Cytodex 3. The authors found that human foetal mesenchymal stem cells (hfMSCs) cultured on apatite microcarriers exhibited comparable growth characteristics, achieving 1.4-fold higher live cells than Cytodex 3 over a 9-day culture period. As these microcarriers were hypothesised to offer enhanced osteogenic potency over conventional monolayer culture, alkaline phosphatase (ALP), type I collagen and osteocalcin expression of hfMSCs cultured on the apatite microcarriers were evaluated over a 12-day period. ALP expression for hfMSCs seeded on apatite microcarriers was 2.7-fold higher than that of adherent monolayer culture (p < 0.001). Additionally, type I collagen and osteocalcin expression were 1.8- and 1.5-fold higher than that of adherent monolayer culture on day 12, respectively (p < 0.001).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据