4.2 Article

A Baculovirus Photolyase with DNA Repair Activity and Circadian Clock Regulatory Function

期刊

JOURNAL OF BIOLOGICAL RHYTHMS
卷 27, 期 1, 页码 3-11

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0748730411429665

关键词

CPD photolyase; cryptochrome; circadian clock; baculovirus; ChchNPV

资金

  1. Netherlands Organization for Scientific Research (NWO): CW ECHO [700.57.012, ALW2PJ/06023, MEERVOUD-836.05.070]

向作者/读者索取更多资源

Cryptochromes and photolyases belong to the same family of flavoproteins but, despite being structurally conserved, display distinct functions. Photolyases use visible light to repair ultraviolet-induced DNA damage. Cryptochromes, however, function as blue-light receptors, circadian photoreceptors, or repressors of the CLOCK/BMAL1 heterodimer, the transcription activator controlling the molecular circadian clock. Here, we present evidence that the functional divergence between cryptochromes and photolyases is not so univocal. Chrysodeixis chalcites nucleopolyhedrovirus possesses 2 photolyase-like genes: phr1 and phr2. We show that PHR1 and PHR2 are able to bind the CLOCK protein. Only for PHR2, however, the physical interaction with CLOCK represses CLOCK/BMAL1-driven transcription. This result shows that binding of photolyase per se is not sufficient to inhibit the CLOCK/BMAL1 heterodimer. PHR2, furthermore, affects the oscillation of immortalized mouse embryonic fibroblasts, suggesting that PHR2 can regulate the molecular circadian clock. These findings are relevant for further understanding the evolution of cryptochromes and photolyases as well as behavioral changes induced in insects by baculoviruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据