4.4 Article

Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis

期刊

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
卷 16, 期 4, 页码 553-565

出版社

SPRINGER
DOI: 10.1007/s00775-011-0755-1

关键词

Ribonucleotide reductase; Oxygen cleavage; Manganese; Iron; Density functional theory

向作者/读者索取更多资源

The oxygen cleavage in Chlamydia trachomatis ribonucleotide reductase (RNR) has been studied using B3LYP* hybrid density functional theory. Class Ic C. trachomatis RNR lacks the radical-bearing tyrosine, crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)-Tyr(rad) active state, C. trachomatis RNR has a mixed Mn(IV)Fe(III) metal center in subunit II (R2). A mixed MnFe metal center has never been observed as a radical cofactor before. The active state is generated by reductive oxygen cleavage at the metal site. On the basis of calculated barriers for oxygen cleavage in C. trachomatis R2 and R2 from Escherichia coli with a diiron, a mixed manganese iron, and a dimanganese center, conclusions can be drawn about the effect of changing metals in R2. The oxygen cleavage is found to be governed by two factors: the redox potentials of the metals and the relative stability of the different peroxides. Mn(IV) has higher stability than Fe(IV), and the barrier is therefore lower with a mixed metal center than with a diiron center. With a dimanganese center, an asymmetric peroxide is more stable than the symmetric peroxide, and the barrier therefore becomes too high. Calculated proton-coupled redox potentials are compared to identify three possible R2 active states, the Fe(III)-Fe(III)-Tyr(rad) state, the Mn(IV)Fe(III) state, and. the Mn(IV)Mn(IV) state. A tentative energy profile of the thermodynamics of the radical transfer from R2 to subunit I is constructed to illustrate how the stability of the active states can be understood from a thermodynamical point of view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据