4.4 Article

Metal ions in biological catalysis: from enzyme databases to general principles

期刊

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
卷 13, 期 8, 页码 1205-1218

出版社

SPRINGER
DOI: 10.1007/s00775-008-0404-5

关键词

Metal; Enzyme; Metalloenzyme; Database; Catalysis

资金

  1. Ministero Italiano dell'Universitae della Ricerca (MIUR) [RBLA032ZM7]
  2. European Union [026145]
  3. Ente Cassa di Risparmio di Firenze
  4. Wellcome Trust [062347]
  5. EMBL

向作者/读者索取更多资源

We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (http://www. ebi. ac. uk/thornton-srv/databases/Metal_MACiE/home.html). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据