4.6 Article

Genetic Analysis of the Structure and Function of 7SK Small Nuclear Ribonucleoprotein (snRNP) in Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 30, 页码 21181-21190

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.557751

关键词

-

资金

  1. National Institute of Health CARE Center [U19 AI076113]
  2. HARC Center [P50 GM082250, AI076113]
  3. American Foundation of AIDS [108241-51-RGRL]

向作者/读者索取更多资源

The positive transcription elongation factor b (P-TEFb), comprised of cyclin-dependent kinase 9 (CDK9) and cyclins T1 (CycT1) or T2 (CycT2), activates eukaryotic transcription elongation. In growing cells, P-TEFb exists in active and inactive forms. In the latter, it is incorporated into the 7SK small nuclear ribonucleoprotein, which contains hexamethylene bisacetamide-induced proteins (HEXIM) 1 or 2, La-related protein 7 (LaRP7), methyl phosphate capping enzyme, and 7SK small nuclear RNA (7SK). HEXIM1 inhibits the kinase activity of CDK9 via interactions between 7SK, HEXIM1, and CycT1. LaRP7 and methyl phosphate capping enzyme interact with 7SK independently of HEXIM1 and P-TEFb. To analyze genetic interactions between HEXIM1 and/or LaRP7 and 7SK using a cell-based system, we established artificial heterologous RNA tethering assays in which reporter gene expression depended on interactions between selected regions of 7SK and its cognate binding partners fused to a strong activator. This system enabled us to map the HEXIM1- and LaRP7-binding regions of 7SK. Assays with various mutant 7SK plasmid targets revealed that the 5' U-U bulge and central loop of stem-loop I or RNA motif 3 of 7SK are required for transactivation, suggesting that HEXIM1 and CycT1 form a combinatorial binding surface for 7SK. Moreover, a region in HEXIM1 C-terminal to its previously mapped RNA-binding motif was also required for interactions between HEXIM1 and 7SK. Finally, a tyrosine-to-alanine mutation in HEXIM1, which is critical for its inhibitory effect on CDK9, changed HEXIM1 into an activator. These cell-based assays elucidate this important aspect of transcription elongation in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据