4.6 Article

Non-chaperone Proteins Can Inhibit Aggregation and Cytotoxicity of Alzheimer Amyloid β Peptide

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 40, 页码 27766-27775

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.574947

关键词

Alzheimer Disease; Amyloid- (AB); Protein Aggregation; Protein-Protein Interaction; Spectroscopy; Aggregates; Fibrillation; Toxicity

向作者/读者索取更多资源

Background: A amyloid formation is associated with Alzheimer disease. Results: Non-chaperone proteins prevent amyloid formation and reduce the cytotoxicity of the A peptide. Conclusion: Non-chaperone proteins may affect the onset and development of Alzheimer disease by interfering with A peptide aggregation. Significance: Non-chaperone proteins can function as a chaperone protein to regulate the pathway of the A fibrillation in proteostasis providing a new strategy in the treatment of Alzheimer disease. Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the A peptide that is associated with Alzheimer disease. Other proteins that are present when A peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on A aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, -lactalbumin, and -lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer A(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to A, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting A aggregation. We propose general mechanisms for the broad-spectrum inhibition A fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据